Does thinning‐induced gap size result in altered soil microbial community in pine plantation in eastern Tibetan Plateau?
نویسندگان
چکیده
Although the effects of gap formation resulting from thinning on microclimate, plant generation and understory plant community have been well documented, the impact of thinning on soil microbial community and related ecological functions of forests particularly in subalpine coniferous region is largely unknown. Here, the effects of thinning on soil microbial abundance and community structure using phospholipid fatty acid (PLFA) in pine plantations were investigated 6 years after thinning. The experimental treatments consisted of two distinct-sized gaps (30 m2 or 80 m2 in size) resulting from thinning, with closed canopy (free of thinning) as control. Soil temperature as well as the biomass of actinomycete and unspecific bacteria was sensitive to gap formation, but all these variables were only responsive to medium gap. Nonmetric multidimensional scaling confirmed that soil microbial community was responsive to gap size. In addition, gap size exerted contrasting effect on bacteria-feeding nematode and fungi-feeding nematodes. In conclusion, thinning-induced gap size would affect soil microbial community through changing soil temperature or the abundance of fungi-feeding nematodes.
منابع مشابه
Effects of forest conversion on soil microbial communities depend on soil layer on the eastern Tibetan Plateau of China
Forest land-use changes have long been suggested to profoundly affect soil microbial communities. However, how forest type conversion influences soil microbial properties remains unclear in Tibetan boreal forests. The aim of this study was to explore variations of soil microbial profiles in the surface organic layer and subsurface mineral soil among three contrasting forests (natural coniferous...
متن کاملEffects of stand age and soil properties on soil bacterial and fungal community composition in Chinese pine plantations on the Loess Plateau
The effects of Chinese pine (Pinus tabuliformis) on soil variables after afforestation have been established, but microbial community changes still need to be explored. Using high-throughput sequencing technology, we analyzed bacterial and fungal community composition and diversity in soils from three stands of different-aged, designated 12-year-old (PF1), 29-year-old (PF2), and 53-year-old (PF...
متن کاملEffects of Short-Term Warming and Altered Precipitation on Soil Microbial Communities in Alpine Grassland of the Tibetan Plateau
Soil microbial communities are influenced by climate change drivers such as warming and altered precipitation. These changes create abiotic stresses, including desiccation and nutrient limitation, which act on microbes. However, our understanding of the responses of microbial communities to co-occurring climate change drivers is limited. We surveyed soil bacterial and fungal diversity and compo...
متن کاملSeasonal Dynamics of Soil Microbial Biomass C and N along an Elevational Gradient on the Eastern Tibetan Plateau, China
Little information is available on the seasonal response of soil microbial biomass to climate warming even though it is very sensitive to climate change. A two-year field experiment was conducted in the subalpine and alpine forests of the eastern Tibetan Plateau, China. The intact soil cores from 3,600 m site were incubated in three elevations (3,000 m, 3,300 m and 3,600 m) to simulate climate ...
متن کاملHydrologic and Water Quality Effects
Forest operations such as harvesting, thinning, and site preparation can affect the hydrologic behavior of watersheds on poorly drained soils. The influence of these operations conducted on organic soil sites can be more pronounced than on mineral soil sites due to the differences in bulk density and soil moisture relationships that exist between mineral and organic soils. This article reports ...
متن کامل